Exploring the Impact of Rapid-scan Radar Data on NWS Warnings

Pam Heinselman NOAA National Severe Storms Laboratory

Daphne LaDue OU CAPS

Heather Lazrus
NCAR

Motivation

Motivation

NWS Central Region Service Assessment Joplin, Missouri, Tornado – May 22, 2011

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration National Weather Service, Central Region Headquarters Kansas City, MO

July 2011

Motivation

"To enhance the ability to monitor rapid tornadogenesis, the NWS should develop and implement additional Volume Coverage Pattern strategies that allow for more continuous sampling near the surface (e.g., 1-min lowest elevation sampling)."

Objective

Explore how improvements in depiction of storm development from rapid sampling may benefit forecasters' decision making process.

Innovative Sensing Experiment

12 forecasters, 12-30 April 2010

Tuesday Afternoon
Introduction to PAR & WDSS-II training

Tuesday Evening and Wednesday

Gain experience interrogating PAR data and issue warnings using WDSS-II WARNGEN

Thursday
Temporal Resolution Experiment

Temporal Resolution Experiment

Paired forecasters w/ similar radar analysis skills

Worked tropical supercell event that produced EF1

tornado (unwarned)

Pair 1: 43-s updates

Pair 2: 4.5-min updates

19 Aug 2007

4.5-min Updates

43-s

Updates

Data We Collected

Audio of the teams working through situation awareness and the case

Products issued

Two observers took notes in each room

Data We Collected

Teams debriefed individually

Joint debrief to compare across teams

Each individual ranked factors in their warning decision

Each individual completed a confidence continuum

Understanding decision process Coding and Thematic Analysis

Cognitive Actions

Emotions

Data used

Experiment Design & Software

Example Analysis: 43-s Team Decision Process

What we've learned

6 teams interrogated <u>similar radar signatures</u>
Came to <u>different conclusions about whether and when to warn</u>

(Hahn et al. 2003; Hoffman et al. 2006; Pliske et al. 1997)

Environment & Radar Decision Factors

	43-s Team	4.5-minTeam
Weaker Couplet Strength	66%	83%
Trend in Circulation Strength	100%	100%
Update Time Detrimental	0%	100%
Environment	66%	66%
Reflectivity Notch	100%	100%

Understanding of Supercell in Tropical Environment

Understanding of NWRT PAR Data

What we've learned

- This type of data analysis is time intensive!
- Warning decision process is complex
- Some decision factors were similar across groups, others were not
- Update time likely had a positive impact on warning lead time

